Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. Aggregator transformation
  7. B2B transformation
  8. Chunking transformation
  9. Cleanse transformation
  10. Data Masking transformation
  11. Data Services transformation
  12. Deduplicate transformation
  13. Expression transformation
  14. Filter transformation
  15. Hierarchy Builder transformation
  16. Hierarchy Parser transformation
  17. Hierarchy Processor transformation
  18. Input transformation
  19. Java transformation
  20. Java transformation API reference
  21. Joiner transformation
  22. Labeler transformation
  23. Lookup transformation
  24. Machine Learning transformation
  25. Mapplet transformation
  26. Normalizer transformation
  27. Output transformation
  28. Parse transformation
  29. Python transformation
  30. Rank transformation
  31. Router transformation
  32. Rule Specification transformation
  33. Sequence transformation
  34. Sorter transformation
  35. SQL transformation
  36. Structure Parser transformation
  37. Transaction Control transformation
  38. Union transformation
  39. Vector Embedding transformation
  40. Velocity transformation
  41. Verifier transformation
  42. Web Services transformation

Transformations

Transformations

Union transformation

Union transformation

The Union transformation is an active transformation that you use to merge data from multiple pipelines into a single pipeline.
For data integration patterns, it is common to combine two or more data sources into a single stream that includes the union of all rows. The data sources often do not have the same structure, so you cannot freely join the data streams. The Union transformation enables you to make the metadata of the streams alike so that you can combine the data sources in a single target.
The Union transformation merges data from multiple sources similar to the UNION ALL SQL statement. For example, you might use the Union transformation to merge employee information from ADP with data from a Workday employee object.
You can add, change, or remove specific fields when you merge data sources with a Union transformation.
At run time, the
mapping
task processes input groups in parallel. It concurrently reads the sources connected to the Union transformation and pushes blocks of data into the input groups of the transformation. As the mapping runs, it merges data into a single output group based on the field mappings.

0 COMMENTS

We’d like to hear from you!
Manish Kumar - May 08, 2023

 

Does Union operator not support addition of new group as i need to add new group as i have more than 2 data source?

Informatica Documentation Team - May 08, 2023

Hi Manish Kumar,

You can use the Union transformation with more than two data sources. To merge data from more than two sources, add an input group for each additional source.

In the Mapping Designer, connect an upstream transformation to the "New Group" group of the Union transformation. You can also add input groups on the Incoming Fields tab.

For more information, please see the "Union transformation > Input groups" topic.