Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Aggregator transformation
  6. Cleanse transformation
  7. Data Masking transformation
  8. Data Services transformation
  9. Deduplicate transformation
  10. Expression transformation
  11. Filter transformation
  12. Hierarchy Builder transformation
  13. Hierarchy Parser transformation
  14. Hierarchy Processor transformation
  15. Input transformation
  16. Java transformation
  17. Java transformation API reference
  18. Joiner transformation
  19. Labeler transformation
  20. Lookup transformation
  21. Machine Learning transformation
  22. Mapplet transformation
  23. Normalizer transformation
  24. Output transformation
  25. Parse transformation
  26. Python transformation
  27. Rank transformation
  28. Router transformation
  29. Rule Specification transformation
  30. Sequence Generator transformation
  31. Sorter transformation
  32. SQL transformation
  33. Structure Parser transformation
  34. Transaction Control transformation
  35. Union transformation
  36. Velocity transformation
  37. Verifier transformation
  38. Web Services transformation

Transformations

Transformations

Defining rank groups

Defining rank groups

You can configure the Rank transformation to define groups for ranked rows. For example, to select the 10 most expensive items by manufacturer, define a rank group for the manufacturer. Define rank groups on the
Group By
tab.
To define rank groups, select one or more incoming fields as
Group By Fields
. For each unique value in a rank group, the transformation creates a group of rows that fall within the rank definition (top or bottom, and number in each rank).
Define rank groups to improve performance in a mapping in advanced mode that processes a large volume of data. When you define rank groups, processing is distributed across multiple worker nodes. If you do not define rank groups, the data is processed on one worker node. Depending on the volume of data, performance is impacted and the mapping might fail due to a lack of storage space on the EBS volume that is attached to the worker node.
For example, you create a Rank transformation that ranks the top five salespersons grouped by quarter. The rank index numbers the salespeople from 1 to 5 for each quarter as follows:
RANKINDEX
SALES_PERSON
SALES
QUARTER
1
Alexandra B.
10000
1
2
Boris M.
9000
1
3
Chanchal R.
8000
1
4
Dong T.
7000
1
5
Elias M.
6000
1
1
Elias M.
11000
2
2
Boris M.
10000
2
3
Alexandra B.
9050
2
4
Dong T.
7500
2
5
Frances Z.
6900
2
If you define multiple rank groups, the Rank transformation groups the ranked rows in the order in which the fields are selected in the
Group By Fields
list.

0 COMMENTS

We’d like to hear from you!