Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. Aggregator transformation
  7. B2B transformation
  8. Chunking transformation
  9. Cleanse transformation
  10. Data Masking transformation
  11. Data Services transformation
  12. Deduplicate transformation
  13. Expression transformation
  14. Filter transformation
  15. Hierarchy Builder transformation
  16. Hierarchy Parser transformation
  17. Hierarchy Processor transformation
  18. Input transformation
  19. Java transformation
  20. Java transformation API reference
  21. Joiner transformation
  22. Labeler transformation
  23. Lookup transformation
  24. Machine Learning transformation
  25. Mapplet transformation
  26. Normalizer transformation
  27. Output transformation
  28. Parse transformation
  29. Python transformation
  30. Rank transformation
  31. Router transformation
  32. Rule Specification transformation
  33. Sequence transformation
  34. Sorter transformation
  35. SQL transformation
  36. Structure Parser transformation
  37. Transaction Control transformation
  38. Union transformation
  39. Vector Embedding transformation
  40. Velocity transformation
  41. Verifier transformation
  42. Web Services transformation

Transformations

Transformations

Structure Parser transformation

Structure Parser transformation

The Structure Parser transformation transforms your input data into a user-defined structured format based on an
intelligent structure model
. You can use the Structure Parser transformation to analyze data such as log files, clickstreams, XML or JSON files, Word tables, and other unstructured or semi-structured formats.
You can connect a Structure Parser transformation to the following types of sources:
  • A Source transformation based on a flat file to process local input files
  • A Source transformation based on a Hadoop Files V2 connection to stream input files in HDFS or to process local input files
When you configure a Structure Parser transformation, you associate it with an
intelligent structure model
. An
intelligent structure model
is an asset that
Intelligent Structure Discovery
generates to represent the data that you expect the model to parse at run time. You can create a model before you configure the Structure Parser transformation or as you configure it.
Intelligent Structure Discovery
generates the
intelligent structure model
based on a sample of your input data or a schema that you provide. You can create a model from the following input types:
  • Avro files
  • Cobol copybooks
  • Data within PDF form fields
  • Data within Microsoft Word tables
  • JSON files
  • Machine generated files such as weblogs and clickstreams
  • Microsoft Excel files
  • ORC files
  • PDF files
  • Parquet files
  • Text files, including delimited files such as CSV files and complex files that contain textual hierarchies
  • XML files
  • XSD files
After
Intelligent Structure Discovery
generates the
intelligent structure model
, you can refine the model and customize the structure of the output data. You can edit the nodes in the model to combine, exclude, flatten, or collapse them.

0 COMMENTS

We’d like to hear from you!