Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. Aggregator transformation
  7. B2B transformation
  8. Chunking transformation
  9. Cleanse transformation
  10. Data Masking transformation
  11. Data Services transformation
  12. Deduplicate transformation
  13. Expression transformation
  14. Filter transformation
  15. Hierarchy Builder transformation
  16. Hierarchy Parser transformation
  17. Hierarchy Processor transformation
  18. Input transformation
  19. Java transformation
  20. Java transformation API reference
  21. Joiner transformation
  22. Labeler transformation
  23. Lookup transformation
  24. Machine Learning transformation
  25. Mapplet transformation
  26. Normalizer transformation
  27. Output transformation
  28. Parse transformation
  29. Python transformation
  30. Rank transformation
  31. Router transformation
  32. Rule Specification transformation
  33. Sequence transformation
  34. Sorter transformation
  35. SQL transformation
  36. Structure Parser transformation
  37. Transaction Control transformation
  38. Union transformation
  39. Vector Embedding transformation
  40. Velocity transformation
  41. Verifier transformation
  42. Web Services transformation

Transformations

Transformations

Dependent masking parameters

Dependent masking parameters

To apply dependent masking on a source column, at least one column must be masked with a custom substitution rule.
The following table describes the parameters that you can configure for dependent masking:
Property
Description
Dependent Column
The input column configured for custom substitution masking that you want to relate to the source column. Choose a column from the list. Columns that you configure with substitution masking appear in the list.
Dependent Output Column
The dictionary column to use to mask the source data column. Lists the columns in the dictionary used to mask the dependent column. Choose the required column from the list of dictionary columns.

0 COMMENTS

We’d like to hear from you!