Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. Aggregator transformation
  7. B2B transformation
  8. Cleanse transformation
  9. Data Masking transformation
  10. Data Services transformation
  11. Deduplicate transformation
  12. Expression transformation
  13. Filter transformation
  14. Hierarchy Builder transformation
  15. Hierarchy Parser transformation
  16. Hierarchy Processor transformation
  17. Input transformation
  18. Java transformation
  19. Java transformation API reference
  20. Joiner transformation
  21. Labeler transformation
  22. Lookup transformation
  23. Machine Learning transformation
  24. Mapplet transformation
  25. Normalizer transformation
  26. Output transformation
  27. Parse transformation
  28. Python transformation
  29. Rank transformation
  30. Router transformation
  31. Rule Specification transformation
  32. Sequence transformation
  33. Sorter transformation
  34. SQL transformation
  35. Structure Parser transformation
  36. Transaction Control transformation
  37. Union transformation
  38. Velocity transformation
  39. Verifier transformation
  40. Web Services transformation

Transformations

Transformations

Aggregator transformation

Aggregator transformation

Configure an Aggregator transformation to perform aggregate calculations, such as averages and sums, against groups of data. You can use an Aggregator transformation to remove duplicate rows.
The Aggregator transformation behaves like the Expression transformation except you can configure the Aggregator transformation to perform calculations on a group of data. The Expression transformation returns results on a row-by-row basis.
For example, you can use the Aggregator transformation to calculate the average salary for employees in each department of an organization. In the Aggregator transformation, create a group for the department number and then configure an expression to calculate the average salary for the employees in each group.

0 COMMENTS

We’d like to hear from you!