Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. Aggregator transformation
  7. B2B transformation
  8. Chunking transformation
  9. Cleanse transformation
  10. Data Masking transformation
  11. Data Services transformation
  12. Deduplicate transformation
  13. Expression transformation
  14. Filter transformation
  15. Hierarchy Builder transformation
  16. Hierarchy Parser transformation
  17. Hierarchy Processor transformation
  18. Input transformation
  19. Java transformation
  20. Java transformation API reference
  21. Joiner transformation
  22. Labeler transformation
  23. Lookup transformation
  24. Machine Learning transformation
  25. Mapplet transformation
  26. Normalizer transformation
  27. Output transformation
  28. Parse transformation
  29. Python transformation
  30. Rank transformation
  31. Router transformation
  32. Rule Specification transformation
  33. Sequence transformation
  34. Sorter transformation
  35. SQL transformation
  36. Structure Parser transformation
  37. Transaction Control transformation
  38. Union transformation
  39. Vector Embedding transformation
  40. Velocity transformation
  41. Verifier transformation
  42. Web Services transformation

Transformations

Transformations

Active and passive Python transformations

Active and passive Python transformations

When you create a Python transformation, you specify how it generates output rows by defining the behavior as active or passive. You define the behavior on the
Advanced
tab. By default, the Python transformation is active.
A Python transformation handles output rows based on the behavior as follows:
  • An active transformation can change the number of rows that pass through it.
    To define the number of rows in the output, call the generateRow() method in the code to generate each output row. You might choose to generate multiple output rows from a single input row or generate a single output row from multiple input rows. For example, if the transformation contains two incoming fields that represent a start date and an end date, you can call the generateRow() method to generate an output row for each date between the start date and the end date.
  • A passive transformation cannot change the number of rows that pass through the transformation. The transformation calls the generateRow() method to generate an output row after processing each input row.

0 COMMENTS

We’d like to hear from you!