Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. Aggregator transformation
  7. B2B transformation
  8. Chunking transformation
  9. Cleanse transformation
  10. Data Masking transformation
  11. Data Services transformation
  12. Deduplicate transformation
  13. Expression transformation
  14. Filter transformation
  15. Hierarchy Builder transformation
  16. Hierarchy Parser transformation
  17. Hierarchy Processor transformation
  18. Input transformation
  19. Java transformation
  20. Java transformation API reference
  21. Joiner transformation
  22. Labeler transformation
  23. Lookup transformation
  24. Machine Learning transformation
  25. Mapplet transformation
  26. Normalizer transformation
  27. Output transformation
  28. Parse transformation
  29. Python transformation
  30. Rank transformation
  31. Router transformation
  32. Rule Specification transformation
  33. Sequence transformation
  34. Sorter transformation
  35. SQL transformation
  36. Structure Parser transformation
  37. Transaction Control transformation
  38. Union transformation
  39. Vector Embedding transformation
  40. Velocity transformation
  41. Verifier transformation
  42. Web Services transformation

Transformations

Transformations

Create a mapping with parameters

Create a mapping with parameters

Create a mapping with parameters if you want to assign masking techniques at runtime, or if you want to be able to update the rows to mask without editing the mapping.
  1. Log in to
    Informatica Intelligent Cloud Services
    and open
    Data Integration
    .
  2. Click
    New
    Mappings
    Mapping
    to open a new mapping in the mapping designer.
  3. Configure the source transformation.
    Optionally, use a parameter for the connection. If you use a parameter, and the object names in each source differ or you don't know the object name, ensure that you use a parameter for the object. If the object name is the same in all sources that you plan to use this mapping with, you can choose the source type as single object and then enter the object name.
  4. Configure the target transformation.
    Optionally, use a parameter for the connection. If the object names in each target differ or you don't know the object name, ensure that you use a parameter for the object. If the object name is the same in all targets that you plan to use this mapping with, you can choose the target type as single object and then enter the object name. The object must exist when the mapping runs. You can't create the target object at runtime.
  5. Drag a Data Masking transformation from the transformations palette onto the mapping designer and connect it to the data flow.
  6. Select the Data Masking transformation object in the mapping designer. The properties appear on the
    Properties
    tab.
  7. On the
    General
    tab, enter a name and optional description for the transformation object.
  8. On the
    Masking Rules
    tab, select
    Add a parameter
    to configure masking techniques at runtime.
  9. Click
    New Parameter
    and create a masking parameter. Then select the parameter from the list.
    The following image shows a sample masking_rules parameter created and selected:
    The image shows the Masking Rules tab of the Data Masking transformation object in a mapping with a mask rule parameter created and selected.
  10. Select a relational dictionary connection or a flat file dictionary connection and storage connection from the lists.
    If you don't select values here, you can't add or update the values when you run the mapping.
  11. Click
    Save
    to save the mapping.

0 COMMENTS

We’d like to hear from you!