Table of Contents

Search

  1. Preface
  2. Transformations
  3. Source transformation
  4. Target transformation
  5. Access Policy transformation
  6. Aggregator transformation
  7. B2B transformation
  8. Chunking transformation
  9. Cleanse transformation
  10. Data Masking transformation
  11. Data Services transformation
  12. Deduplicate transformation
  13. Expression transformation
  14. Filter transformation
  15. Hierarchy Builder transformation
  16. Hierarchy Parser transformation
  17. Hierarchy Processor transformation
  18. Input transformation
  19. Java transformation
  20. Java transformation API reference
  21. Joiner transformation
  22. Labeler transformation
  23. Lookup transformation
  24. Machine Learning transformation
  25. Mapplet transformation
  26. Normalizer transformation
  27. Output transformation
  28. Parse transformation
  29. Python transformation
  30. Rank transformation
  31. Router transformation
  32. Rule Specification transformation
  33. Sequence transformation
  34. Sorter transformation
  35. SQL transformation
  36. Structure Parser transformation
  37. Transaction Control transformation
  38. Union transformation
  39. Vector Embedding transformation
  40. Velocity transformation
  41. Verifier transformation
  42. Web Services transformation

Transformations

Transformations

Vector embedding techniques

Vector embedding techniques

Use a vector embedding technique to create a vector embedding for input text. You can choose a technique based on the pre-trained model you want to use to convert the text to a vector.
A vector embedding represents the text as an array of numbers. Each element in the array represents a different dimension of the text. To create vector embeddings, select an input column for embedding and then select one of the following vector embedding techniques:
Word embedding
Convert each word to a vector using the Word2Vec Gigaword 5th Edition model with 300 dimensions (word2vec_giga_300). Useful for text classification and sentiment analysis.
BERT embedding
Convert each sentence to a vector using the Smaller BERT Embedding (L-2_H-768_A-12) model with 768 dimensions (small_bert_L2_768). Useful for text classification and semantic search.
Consider the following rules and guidelines for vector embeddings:
  • Vector embeddings created by different embedding models can't be compared even if they have the same dimensions. If you switch between embedding models, rerun the mapping, including all Source, Chunking, Vector Embedding, and Target transformations, to create embeddings for all documents using the new model.
  • Because the Vector Embedding transformation is a passive transformation that produces one output row for each input row, input columns that contain null or empty strings return an empty output vector. If the vector is empty, vector databases like Pinecone might drop the row.
  • The Vector Embedding transformation can process only English text.

0 COMMENTS

We’d like to hear from you!